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I. Enumerating

Perfect forms



Notations
I We define Sn the space of symmetric matrices, Sn

>0 the cone
of positive definite matrices.

I For A ∈ Sn
>0 define A[x ] = xAxT ,

min(A) = min
x∈Zn−{0}

A[x ] and Min(A) = {x ∈ Zn s.t. A[x ] = min(A)}

I A matrix A ∈ Sn
>0 is perfect (Korkine & Zolotarev) if the

equation

B ∈ Sn and B[x ] = min(A) for all x ∈ Min(A)

implies B = A.
I If A is perfect, then its perfect domain is the polyhedral cone

Dom(A) =
∑

v∈Min(A)

R+p(v).

I The Ryshkov polyhedron Rn is defined as

Rn = {A ∈ Sn s.t. A[x ] ≥ 1 for all x ∈ Zn − {0}}



Known results on perfect form enumeration

dim. Nr. of perfect forms Best lattice packing
2 1 (Lagrange) A2

3 1 (Gauss) A3

4 2 (Korkine & Zolotarev) D4

5 3 (Korkine & Zolotarev) D5

6 7 (Barnes) E6 (Blichfeldt & Watson)
7 33 (Jaquet) E7 (Blichfeldt & Watson)
8 10916 (DSV) E8 (Blichfeldt & Watson)
9 ≥9.200.000 Λ9?

I The enumeration of perfect forms is done with the Voronoi
algorithm.

I Blichfeldt used Korkine-Zolotarev reduction theory.
I Perfect form theory has applications in

I Lattice theory for the lattice packing problem.
I Computation of homology groups of GLn(Z).
I Compactification of Abelian Varieties.



Perfect forms in dimension 9

I Finding the perfect forms in dimension 9 would solve the
lattice packing problem.

I Several authors did partial enumeration of perfect forms in
dimension 9:

I Schürmann & Vallentin: ≥ 500000
I Anzin: ≥ 524000
I Andreanov & Scardicchio: ≥ 500000 (but actually 1.106)
I van Woerden: ≥ 9.106

So, one does not necessarily expect an impossibly large
number.

I Other reason why it may work:
I Maximal kissing number is 136 (by Watson)
I The number of complex cones (with number of rays greater

than n(n + 1)/2 + 20) is not too high.
I Many cones have a pyramid decomposition:

C = C ′ + R+v1 + · · ·+ R+vr with dim C ′ = dim C − r



Needed tools: Canonical form
I The large number of perfect forms mean that we need special

methods for isomorphism
I Two alternatives:

I Use very fine invariants: (det(A),min(A)) is already quite
powerful.

I Use a canonical form.

I Minkowski reduction provides a canonical form but is hard to
compute.

I Isomorphism and stabilizer computations can be done by
ISOM/AUTOM but we risk being very slow if the invariant
are not fine enough.

I Partition backtrack programs for graph isomorphism (nauty,
bliss, saucy, traces, etc.) provides a canonical form for graphs.

I Using this we can:
I Find a canonical form for edge weighted graphs.
I Find a canonical ordering of the shortest vectors.
I Find a canonical presentation of the shortest vectors.
I Find a canonical representation of the form.



Needed tools: MPI parallelization and Dual description

I There are two essential difficulties for the computation:
I The very large number of perfect forms.
I The difficult to compute perfect forms whose number of

shortest vectors is very high.

I For the first problem, the solution is to use MPI (Message
Passing Interface) formalism for parallel computation. This
can scale to thousands of processors (work with Wessel van
Woerden).

I The dual description problem is harder:
I As mentioned, many cones are pyramid and thus their dual

description is relativly easy.
I But many cones, in particular the one of Λ9, are not so simple

but yet have symmetries.
I We need to use symmetries for this computation. The

methods exist.
I The critical problem is that we need a permutation group

library in C++.



II. Well rounded retract

and homology



Well rounded forms and retract
I A form Q is said to be well rounded if it admits vectors v1,

. . . , vn such that
I (v1, . . . , vn) form a R-basis of Rn (not necessarily a Z-basis)
I v1, . . . , vn are shortest vectors of Q.

I Such vector configurations correspond to bounded faces of
Rn.

I Every form in Rn can be continuously deformed to a well
rounded form and this defines a contractible polyhedral
complex WRn of dimension n(n−1)

2 .
I Every face of WRn has finite stabilizer.
I WRn is essentially optimal (Pettet, Souto, 2008).
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Topological applications
I The fact that WRn is contractible, has finite stabilizers, and

is acted on by GLn(Z) means that we can compute rational
homology of GLn(Z).

I This has been done for n ≤ 7 (Elbaz-Vincent, Gangl, Soulé,
2013).

I We can get K8(Z) (DS, Elbaz-Vincent, Martinet, in
preparation).

I By using perfect domains, we can compute the action of
Hecke operators on the cohomology.

I This has been done for n ≤ 4 (Gunnells, 2000).
I Using T -space theory this can be extended to the case of

GLn(R) with R a ring of algebraic integers:
I For Eisenstein and Gaussian integers, this means using

matrices invariant under a group.
I For other number fields with r real embeddings and s complex

embeddings this gives a space of dimension

r
n(n + 1)

2
+ sn2



III. Tesselations: Central

cone compactification

?or



Linear Reduction theories in Sn
≥0

Decompositions related to perfect forms:

I The perfect form theory (Voronoi I) for lattice packings (full
face lattice known for n ≤ 7, perfect domains known for
n ≤ 8)

I The central cone compactification (Igusa & Namikawa)
(Known for n ≤ 6)

Decompositions related to Delaunay polytopes:

I The L-type reduction theory (Voronoi II) for Delaunay
tessellations (Known for n ≤ 5)

I The C -type reduction theory (Ryshkov & Baranovski) for
edges of Delaunay tessellations (Known for n ≤ 5)

Fundamental domain constructions:

I The Minkowski reduction theory (Minkowski) it uses the
successive minima of a lattice to reduce it (Known for n ≤ 7)
not face-to-face

I Venkov’s reduction theory also known as Igusa’s fundamental
cone (finiteness proved by Venkov and Crisalli)



Central cone compactification
I We consider the space of integral valued quadratic forms:

In = {A ∈ Sn
>0 s.t. A[x ] ∈ Z for all x ∈ Zn}

All the forms in In have integral coefficients on the diagonal
and half integral outside of it.

I The centrally perfect forms are the elements of In that are
vertices of conv In.

I For A ∈ In we have A[x ] ≥ 1. So, In ⊂ Rn

I Any root lattice gives a vertex both of Rn and conv In.
I The centrally perfect forms are known for n ≤ 6:

dim. Centrally perfect forms
2 A2 (Igusa, 1967)
3 A3 (Igusa, 1967)
4 A4, D4 (Igusa, 1967)
5 A5, D5 (Namikawa, 1976)
6 A6, D6, E6 (DS)

I By taking the dual we get tessellations in Sn
≥0.



Enumeration of centrally perfect forms

I Suppose that we have a conjecturally correct list of centrally
perfect forms A1, . . . , Am. Suppose further that for each form
Ai we have a conjectural list of neighbors N(Ai ).

I We form the cone

C (Ai ) = {X − Ai for X ∈ N(Ai )}

and we compute the orbits of facets of C (Ai ).

I For each orbit of facet of representative f we form the
corresponding linear form f and solve the Integer Linear
Problem:

fopt = min
X∈In

f (X )

It is solved iteratively (using glpk) since In is defined by an
infinity of inequalities.

I If fopt = f (Ai ) always then the list is correct. If not then the
X realizing f (X ) < f (Ai ) need to be added to the full list.



IV. Perfect

coverings



Problem setting and algorithm
We have a d dimensional cone C embedded into Sn

>0 and we want
to find a set of perfect matrix A1, . . . , Am such that

C ⊂ Dom(A1) ∪ · · · ∪ Dom(Am)

We want the cones having an intersection that is full dimensional
in C (this is for application in Algebraic Geometry).
We take a cone C in Sn

>0 of symmetry group G .

I We start by taking a matrix A in the interior of C.

I We compute a perfect form B such that A ∈ Dom(B) and
insert B into the list of orbit

I We iterate the following:
I For each untreated orbit of perfect domain in O compute the

facets.
I For each facet do the flipping and keep if the intersection with
C is full dimensional in C.

I Insert the obtained perfect domains if they are not equivalent
to a known one.



The space intersection problem
I Given a family of vectors (vi )1≤i≤M spanning a cone C ∈ Rn

and a d-dimensional vector space S we want to compute the
intersection

C ∩ S
that is facets and/or extreme rays description.

I In the case considered we have d small.
I Tools:

I We can compute the group of transformations preserving C
and S.

I We can check if a point in S belongs to C ∩ S by linear
programming.

I We can test if a linear inequality f (x) ≥ 0 defines a facet of
C ∩ S by linear programming.

I Algorithm:
I Compute an initial set of extreme rays by linear programming.
I Compute the dual description using the symmetries.
I For each facet found, check if they are really facet. If not add

the missed extreme rays and iterate.



V. Perfect domains for

symplectic group



The invariant manifold

I We are interested in the group G = Sp(2n,Z) defined as

G =
{
M ∈ GL2n(Z) s.t. MJMT = J

}
with J =

(
0 In
−In 0

)
I We want something similar to GLn(Z).

I The idea is to introduce the manifold

MG =
{
MMT for M ∈ Sp(2n,Z)

}
=
{
A ∈ Sn

>0 s.t. AJAT = J
}

I We have MG ⊂ Sn
>0, G acts on it and it is contractible.

I We can consider the perfect domains Dom(A) that intersects
MG in their interior.

I The number of orbits of such perfect domains under Sp(2n,Z)
ought to be finite.

I Maybe the method also applies to other groups G ⊂ GLn(Z)?



Results for n = 2 and n = 3

I In MacPherson & M. McConnell, 1993 a reduction theory for
Sp(4,Z) is given:

I It describe a cell complex on which G acts.
I Number of orbits in the decomposition are 1(vector),

1(Lagrangian space), 2, 3, 3, 2, 2(A4 or D4).
I The rank in the decomposition does not correspond to the

linear algebra rank.

I We can effectively compute the homology and Hecke
operators for n = 2 (Joint work with P. Gunnells). So far we
have

I Computed 4 Hecke operators
I Computed for the Siegel subgroups of Sp(4,Z) up to p = 19.

Need more optimization and computational power.

I For n = 3 likely there is a similar decomposition. We took at
random points in the manifold and computed the
corresponding perfect domain and obtained 22 orbits so far.



VI. Perfect form

complex

13

10916



Perfect form complex

I Each orbit of face corresponds to a vector configuration.

I The rank rk(V) of a vector configuration V = {v1, . . . , vm} is
the rank of the matrix family {p(vi ) = vTi vi}.

I The complex is fully known for n ≤ 7. Number of orbits by
rank (Elbaz-Vincent, Gangl, Soulé, 2013):

I n = 4: 1, 3, 4, 4, 2, 2, 2
I n = 5: 2, 5, 10, 16, 23, 25, 23, 16, 9, 4, 3
I n = 6: 3, 10, 28, 71, 162, 329, 589, 874, 1066, 1039, 775,

425, 181, 57, 18, 7
I n = 7: 6, 28, 115, 467, 1882, 7375, 26885, 87400, 244029,

569568, 1089356, 1683368, 2075982, 2017914, 1523376,
876385, 374826, 115411, 24623, 3518, 352, 33

I It is out of question to enumerate the whole perfect form
complex in dimension 8.

I Instead the idea is to try to enumerate the cells in lowest rank
and go upward in rank.



Testing realizability of vector families I

I Problem: Suppose we have a configuration of vector V. Does
there exist a matrix A ∈ Sn

>0 such that Min(A) = V?

I Consider the linear program

minimize λ
with λ = A[v ] for v ∈ V

A[v ] ≥ 1 for v ∈ Zn − {0} − V

If λopt < 1 then V is realizable, otherwise no.

I In practice one replaces Zn by a finite set Z and iteratively
increases it until a conclusion is reached.

I A related problem is to find the smallest configuration W such
that there exist a A ∈ Sn

>0 with V ⊆ W = Min(A) and
possibly rk(V) = rk(W).

I The major problem is to limit the number of iterations.



Testing realizability of vector families II

I A vector configuration can be simplified by applying LLL
reduction to the positive definite quadratic form

∑
i viv

T
i .

This diminishes the coefficient size

I We can use the GLn(Z)-symmetries of V to diminish the size
of the problem.

I The linear programs occurring are potentially very complex.
We need exact solution fast technique for them. The idea is
to use double precision and glpk. From this we search for a
primal/dual solution. If failing we use the simplex method in
rational arithmetic with cdd.

I According to the optimal solution A0:
I If A0 is positive definite but there is a v such that A0[v ] < 1

then insert it into Z.
I If Ker(A0) 6= 0 we take a v with A0v = 0 and insert it into Z.
I If A0 is not positive semidefinite, we take an eigenvector of

negative eigenvalue and search for rational approximation v .



Simpliciality results
I The perfect form complex provides a compactification of the

moduli space Ag of principally polarized abelian varieties,
which is a canonical model in the sense of the minimal model
program (Shepherd-Barron, 2006).

I For a cone in the perfect form complex, we can consider if it
is simplicial or if it is basic, i.e. if its generators can be
extended to a Z-basis of Sym2(Zn).
This describes the corresponding singularities of the
compactification.

I Theorem: If V = {v1, . . . , vm} is a configuration of shortest
vectors in dimension n such that rk(V) = r with
r ∈ {n, n + 1, n + 2}. Then m = r .

I The proof of this is relatively elementary and use simple
combinatorial arguments (DS., Hukek, Schürmann, 2015).

I Conjecture: The equality m = r also holds if
r ∈ {n + 3, n + 4}.

I No extension to T -spaces.



Enumeration of vector configurations for r = n + 1,
r = n + 2

Suppose we know the configuration of shortest vectors in
dimension n of rank r = n.

I Let V = {v1, . . . , vn} be a short vector configuration with n
vectors.

I We search for the vectors v such that W = V ∪ {v} is a
vector configuration.

I We can assume that V has maximum determinant in the
n + 1 subvector configurations with n vectors of W. Thus

| det(v1, . . . , vi−1, vi+1, . . . , vn, v)| ≤ | det(v1, . . . , vn)|

for 1 ≤ i ≤ n.
I The above inequalities determine a n-dim. polytope.
I We enumerate all the integer points by exhaustive

enumeration.
I We then check for realizability of the vector families.

For rank r = n + 2, we proceed similarly.



Enumeration of vector configurations for r > n + 2
We assume that we know all the realizable vector configurations of
rank r − 1 and r − 2.

I We enumerate all pairs (V,W) with V ⊂ W, rk(V) = r − 2
and rk(W) = r − 1.

I If we have a configuration of rank r , then it contains a
configuration V of rank r − 2 and dimension n which is
contained in two configurations W1 and W2 of rank r − 2
such that V ⊂ W1 and V ⊂ W2.

I So, we combine previous enumeration and obtain a set of
configurations W1 ∪W2

I We check for each of them if there exist a realizable vector
configuration W such that W1 ∪W2 ⊂ W and rk(W) = r .

W

V

2
W W

1



Enumerating the configurations of rank r = n

I This is in general a very hard problem with no satisfying
solution.

I It does not seem possible to use the polyhedral structure in
order to enumerate them.

I The only known upper bound on the possible determinant of
realizable configurations V (Keller, Martinet & Schürmann,
2012) is

|det(V )| ≤
⌊
γ
n/2
n

⌋
with γn the Hermite constant in dimension n.

I This bound is tight up to dimension 8.

I For dimension 9 and 10 the bound combined with known
upper bound on γn gives 30 and 59 as upper bound.

I Any improvement, especially not using γn, would be very
useful.



The case of prime cyclic lattices

I For a prime p ∈ N we consider a lattice L spanned by
e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) and

en+1 =
1

p
(a1, . . . , an), ai ∈ Z

such that (e1, . . . , en) is the configuration of shortest vectors
of a lattice.

I By standard reductions, we can assume that
I a1 ≤ a2 ≤ · · · ≤ an.
I 1 ≤ ai ≤ bp/2c.
I (a1, . . . , an) is lexicographically minimal for the action of (Zp)∗.

I With above restrictions, the families of vectors can be
enumerated via a tree search.



Enumeration up to fixed index

I We want to enumerate the configurations of shortest vectors
of index N.

I For a prime index we do the enumeration of all possibilities
and check for each of them.

I For an index N = p1 × p2 × · · · × pm we do following:
I First the enumeration for N2 = p1 × · · · × pm−1.
I For each realizable configuration of index N2 we compute the

stabilizer.
I Then we enumerate the overlattices up to the stabilizer action.
I And we check realizability for each of them.

I So for n = 10 we have to consider up to index 59.
I This gives 17 prime numbers to consider with a maximal

number of cases 16301164 for p = 59.
I One very complicated case of 49 = 72.
I It would have helped so much to have better bounds on γ10!



Enumeration results for n ≤ 11

I Known number of orbits of cones in the perfect cone
decomposition for rank r ≤ 12 and dimension at most 11.

d \r 4 5 6 7 8 9 10 11 12

4 1 3 4 4 2 2 2 - -

5 2 5 10 16 23 25 23 16

6 3 10 28 71 162 329 589

7 6 28 115 467 1882 7375

8 13a 106 783 6167 50645

9 44b 759 13437 ?

10 283 16062 ?

11 6674c ?

a: Zahareva & Martinet, b: Keller, Martinet & Schürmann.
others: Grushevsky, Hulek, Tommasi, DS, 2017.
c : Partial enumeration, done only up to index 44 with highest
realizable index of 32.



Known enumeration results for n = 12

I In dimension 12 the combinatorial explosion for configuration
of shortest vectors really takes place.

I Up to index 30 we found:

1 1 2 8 3 6
4 56 5 22 6 109
7 62 8 501 9 199

10 685 11 397 12 2372
13 876 14 3012 15 2340
16 8973 17 3173 18 11840
19 5369 20 23072 21 11811
22 23096 23 12393 24 63397
25 19843 26 42627 27 30120
28 77019 29 23629 30 87568

Total: 454576 configurations so far .



Consequences

I Thm: With the exception of the cone of the root lattice D4,
every cone in the perfect cone decomposition of dimension at
most 10 is basic.

I Starting from dimension 11 there are configurations of
shortest vectors which are orientable in the sense of homology.

I In dimension 12 there is a configuration of shortest vectors
whose orbit under GL12(Z) splits in two orbits under SL12(Z).

I Conj. The maximum index in dimension n ≥ 8 is 2n−5.

I Conj. A configuration of shortest vectors of rank r = n can be
extended to a Z-basis of Sym2(Zn).

I Conj. There is a configuration of shortest vectors of a
n-dimensional lattice of rank r = n with trivial stabilizer
(smallest known size is 4).
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